Collisions of Methodology and Epistemology in Data Science
Keywords:
Data science, data science methodology, data science epistemology, industry data science, data ranking, decision making.Abstract
Data Science, which emerged relatively recently, has taken its rightful place in the structure of sciences. The application of data science has shown outstanding possibilities for solving many complex problems in various fields of activity. The basis of its success was a new methodology of cognition, including the concepts and methods of Big Data, Artificial Intelligence, an interdisciplinary approach (computer science, statistics, mathematics, social and humanitarian sciences). The new scientific paradigm of Data Science radically transforms scientific methodology and therefore needs to be substantiated. To solve the problem, the scientometric method, case-study methods, comparative analysis, methodological and epistemological analysis are used. The article considers cases of methodological and epistemological collisions that hinder the effectiveness of data science, their causes and consequences. Specifically, examples of improving search engines on the Internet, optimizing the management of scientific research, and the operation of car navigators in megacities are analyzed. As a result of the conducted research, two groups of contradictions between the methodology and epistemology of data science are distinguished. The first group is associated with subjective causes of dilemmas, the second — with objective ones. In the first group, methodological reasons for the emerging conflicts prevail, while in the second group — epistemological reasons for the emerging contradictions. In the author’s opinion, objective paradoxes are more complex. They touch upon deep questions of the philosophy of science. In any case, the identified contradictions lead to a decrease in the potential of data science, lead to erroneous decisions and erroneous forecasts, and they must be eliminated.
References
Астафьева Е.В., Турунцева М.Ю. Пересмотры ВВП: данные и оценка статистических свойств // Экономический журнал ВШЭ. 2021. Т. 25. № 1. С. 65–101. DOI: 10.17323/1813-8691-2021-25-1-65-101
Вернадский В.И. Избранные труды по истории науки. М.: «Наука», 1981.
Китчин Р. Большие данные, новые эпистемологии и смена парадигм // Социология: методология, методы, математическое моделирование. 2017. № 44. С. 111–152.
Кочедыков И.Е. Об опыте применения больших данных в политической науке // Политическая наука. 2023. № 4. С. 226–251. DOI: 10.31249/poln/2023.04.09
Петрунин Ю.Ю. Искусственный интеллект и методологические вопросы управления знаниями // Философские науки. 2016. № 8. С. 67–74.
Петрунин Ю.Ю. Искусственные нейронные сети в экономике: математический инструмент, модель или методология? // Вестник Московского университета. Серия 6. Экономика. 2024. № 4. С. 92–113. DOI: 10.55959/MSU0130-0105-6-59-4-5
Петрунин Ю.Ю., Агаян Г.М., Бухарин В.В., Григорян А.А., Шевцова И.В., Шикина Г.Е. Интеграция математических методов и цифровых технологий как основа создания комплекса фундаментальных курсов в подготовке современных управленческих кадров // Вестник Московского университета. Серия 21. Управление (государство и общество). 2024. Т. 21. № 1. C. 139–167. DOI: 10.55959/MSU2073-2643-21-2024-1-139-167
Петрунин Ю.Ю., Силуянова Ю.А. Статистические и нейросетевые методы в исследовании управленческих проблем в организации // Нейрокомпьютеры: разработка, применение. 2018. № 10. С. 39–47.
Campagnolo G.M. Participative Epistemology in Social Data Science: Combining Ethnography with Computational and Statistical Approaches // International Journal of Social Research Methodology. 2021. Vol. 25. Is. 3. P. 391–403. DOI: 10.1080/13645579.2021.1892379
Desai J., Watson D., Wang V., Taddeo M., Floridi L. The Epistemological Foundations of Data Science: A Critical Review // Synthese. 2022. Vol. 200. DOI: 10.1007/s11229-022-03933-2
Lebedev S. Methodology of Neo-inductivism: Critical Analysis // Proceedings of the 4th International Conference on Contemporary Education, Social Sciences and Humanities (ICCESSH 2019). 2019. DOI: 10.2991/iccessh-19.2019.2
Lowrie I. Algorithmic Rationality: Epistemology and Efficiency in the Data Sciences // Big Data & Society. 2017. Vol. 4. Is. 1. DOI: 10.1177/2053951717700925
Mayernik M.S. Data Science as an Interdiscipline: Historical Parallels from Information Science // Data Science Journal. 2023. Vol. 22. DOI: 10.5334/dsj-2023-016
McQuillan D. Data Science as Machinic Neoplatonism // Philosophy and Technology. 2018. Vol. 31. P. 253–272. DOI: 10.1007/s13347-017-0273-3
Naur P. Concise Survey of Computer Methods. Lund: Studentlitteratur, 1974.
Naur P. The Science of Datalogy // Communications of the ACM. 1966. Vol. 9. Is. 7. P. 485. DOI: 10.1145/365719.366510
Pietsch W. On the Epistemology of Data Science. Conceptual Tools for a New Inductivism. Cham: Springer, 2022. DOI: 10.1007/978-3-030-86442-2
Prensky M.H. Sapiens Digital: From Digital Immigrants and Digital Natives to Digital Wisdom // Italian Journal of Educational Technology. 2010. Vol. 18. Is. 2. DOI: 10.17471/2499-4324/277
Quine W. On What There Is // Review of Metaphysics. 1948. Vol. 2. Is 5. P. 21–38.
Symons J., Alvarado R. Epistemic Injustice and Data Science Technologies // Syntheses. 2022. Vol. 200. DOI: 10.1007/s11229-022-03631-z
The Fourth Paradigm: Data-Intensive Scientific Discovery / Ed. by T. Hey, S. Tansley, K. Tolle. Redmond: Microsoft Research, 2009.
Zhang L. Looking Back to the Future: A Glimpse at Twenty Years of Data Science // Data Science Journal. 2023. Vol. 22. Is. 7. DOI: 10.5334/dsj-2023-007